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ABSTRACT 

 
In the wave-particle duality, a free particle can be considered as a wave packet. Is 
there a wave property that corresponds to the rest mass of the particle? This is an 
interesting question that has not been extensively explored before. We suggest that 
this problem may be approached by treating the rest mass on the same footing as 
energy and momentum. Here we demonstrate that, by assuming that the matter 
wave of a particle behaves like a photon, one could derive the mass-energy relation 
from the solution of a simplified wave equation. This solution suggests that the rest 
mass of a particle is associated with a “transverse wave number”, which 
characterizes the radial variation of the wave function in the transverse plane. This 
finding has several appealing features. For example, it shows a consistent 
geometrical relationship between mass, energy and momentum in both the wave 
and particle perspectives. Also, it predicts that a massless particle must travel at the 
constant speed of light. Furthermore, from a philosophical point of view, this 
model suggests that the mass-energy relation attributed to the special theory of 
relativity may have a root in the wave-particle duality. Indeed, it is shown that the 
Klein-Gordon equation can be derived naturally based on this model. 

 
                 PACS number:  03.65.Ta   Quantum mechanics/Foundations of quantum mechanics 
 
I. INTRODUCTION 
 

We know that matter has a dual character, with both wave and corpuscular properties [1]. 
In the Newtonian mechanics, a particle is regarded as a corpuscular object, the motion of which is 
determined by its mass and the external force. Clearly, the mass is considered here as a basic 
property of the particle in this corpuscular view. Later, it was suggested from the special theory of 
relativity (STR) that mass is not a constant but varies with the particle speed [2]. Then, only the 
rest mass can be regarded as a basic property of the particle. 
 During the development of quantum mechanics, we further learned that a particle can also 
be considered as a wave [1]. This concept of wave-particle duality raises an interesting question: 
Is there a wave property that is connected to the rest mass of the particle? 

We think that there ought to be such a connection. As suggested from the relativistic 
theory, mass is closely related to energy and momentum [2]. It is well known that the momentum 
(a corpuscular property) of a particle is connected to its wave vector (a wave property) by the de 
Broglie relation [3], and the energy of a particle is connected to its wave frequency by the Planck's 



relation. If mass is to be treated on the same footing as momentum and energy, should not the rest 
mass also be connected to the magnitude of some sort of “intrinsic wave vector”?  

This work presents a simple idea that suggests a possible way to find such a connection. 
We will use a very simple model (i.e., a system containing a single free particle) to demonstrate 
our conceptual approach. 
 
II. DETAILS OF THE PROPOSED MODEL 
 
1. Proposing a simplified wave equation that describes the asymptotic wave properties of a 

free particle in the vacuum 
 Following the spirit of many pioneers in modern physics, including Einstein and 

deBroglie, we proposed that the matter wave of a particle with non-zero rest mass behaves very 
much like a photon. More specifically, we assume that: 

 

(1)  Like the photon, a particle is not a point-like object, instead, it behaves like a wave 
packet. 

(2) Like the photon, the matter wave of a particle is an excitation of a real physical field. 
 

These assumptions imply that the solution of the wave equation does not only give the probability 
of finding the presence of a particle, it actually represents an oscillation of the force field. These 
assumptions thus propose a slight modification from the traditional Copenhagen interpretation of 
the wave function [4]. This proposal, however, is not unreasonable, since the current interpretation 
on the physical meaning of the wave function was dependent more on philosophy rather than on 
physical evidence. While the statistical interpretation of the Copenhagen school had been strongly 
supported by major contributors of the quantum theory, including Bohr and Heisenberg, it was not 
universally agreed. In fact, many well-known physicists at that time, including Einstein, 
Schrödinger, and de Broglie, had opposed such an interpretation [4]. Here, we will simply 
hypothesize that, like the photon, the matter wave of a particle with non-zero rest mass is a real 
physical wave.  
 Our hypothesis may be justified by a number of observations. For example, it is well 
known that electrons can form interference pattern upon diffraction from a crystal. And, the wave 
nature of the electron is clearly demonstrated in the operation of an electron microscope. These 
examples strongly suggest that the electron can behave like a physical wave. Then, what is the 
nature of the physical field (which is sometimes referred to as the “vacuum”) that gives rise to this 
matter wave?  

At present, there are only four known physical fields, i.e., electro-magnetic (EM), weak 
interaction, strong interaction and gravitational. According to the standard model of elementary 
particle today, the first three fields may not be regarded as truly independent and can be unified in 
extremely short distance (or high energy) [5]. Among these four different fields, only the EM field 
appears to have sufficient long range and strength to support the wave of a free particle. The 
gravitational field is extremely weak, while both the strong and weak forces are applicable only in 
very short range (10-13 cm and 10-16 cm, respectively). Since the wave packet representing a free 
particle (such as an electron) must be larger than the inter-atomic distance in a crystal (10-8 cm), if 
the matter wave is a real physical wave, it is most likely to be associated with an oscillation of the 
EM field. 

This argument may be unorthodox, but it is not unreasonable. First, at least one type of 
particle (photon) is already known to be the excitation of the EM field. Second, since electrons 
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and positrons can be converted to photons (by annihilation) and vice versa (by pair creation), their 
mutual convertibility may suggest that electrons and positrons are also excitations of a vacuum, 
the nature of which is related to the EM field. A similar argument can also be made on muons and 
their anti-particles since they can decay to become other leptons and photons. Hence, it is not 
unreasonable to propose that different solutions of the wave equation of a vacuum (which behaves 
like the EM field in the long range) could represent particles of different rest masses. 

At this time, we do not have sufficient knowledge about the detailed properties of the 
vacuum to allow us to write down an exact wave equation for it. In this work, we can only aim at 
finding a reasonable approximation that may describe the basic wave properties of a free particle.  
Thus, we will take advantage of the knowledge that, in the range longer than 10-13 cm, the vacuum 
behaves mainly like an EM field. To find the wave equation of a vacuum, we may start by 
considering the EM field first. From the Maxwell’s equations, one can derive [6] 

 
� 0/ερφ −=         (1A) 

and  � A = - j    ,       (1B) 2
0/ cε

where  �  ≡ 2

2

2
2 1

tc ∂
∂

−∇  is the wave operator or the “D’Alembertian”, φ and A are the scalar and 

vector potentials of the EM field, ρ and j are the charge density and current, respectively, 0ε is the 
dielectric constant of the vacuum, and c is the speed of light.  Using the 4-vector notation  
Aµ = (φ, A) and jµ = (ρ, j ) and adopting the natural unit in which c = 1, Eq. (1) can be simplified to 
become 
 
  � Aµ + jµ 0ε/ = 0.       (2)  
 
Now, if one wants to include the contribution from the strong and weak forces to the vacuum, 
additional terms may be added, and the wave equation may look like 
 
  � Aµ + jµ 0ε/ + FSt + FWk = 0.      (3)  
 
At this time, it is not possible to determine the exact form of the contribution from the strong (FSt) 
and weak force (FWk ). We only know that they are very short ranged. But, if we consider the 
simplest case in which the system contains only a single free particle (travelling in velocity v), 
these two terms become less important because there is no particle-particle interaction. 
Furthermore, since these forces vanish at very short distance (≤10-13 cm), they can be ignored if 
we are interested in solving the wave equation only in the asymptotic region (at distance > 10-13 
cm).  

In this one-particle system, ρ and j will represent the self-charge and the self-current 
associated with the particle. For a particle with no electrical charge, such as a photon, ρ and j of 
course are equal to zero. For a charged particle, such as an electron, ρ and j are very complicated. 
Although there is still a lack of satisfactory theory in calculating the distribution of the self-charge 
in an electron, it is known that the charge of the particle is highly localized in a small core [7]. 
Several earlier theoretical works had estimated that the charge of an electron is confined within a 
region having a very short radius (ro), which is in the order of 10-13 cm [7]. The wave of an 
electron, on the other hand, is supposed to occupy a much larger area (> 10-8 cm); otherwise, it 
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would not be possible to generate a diffraction pattern from a crystal. Then, we can simplify 
Eqs.(3) by considering only the asymptotic region (i.e., r > ro ), where ρ and j can be assumed to 
be practically zero. Under this condition, we have 
 
  � Aµ = 0 .          (4) 
 
The simplest solution of Eq. (4) is to let all components of this 4-vector to vary with space and 
time in the same manner. That is, if one can find a scalar function ψ, which satisfies 
 

� ψ = 0 ,        (5) 
 
then the 4-vector  Aµ = (φoψ, Aoψ)  will automatically satisfy Eq. (4). Here, the coefficients Ao and 
φo are subject only to the Lorentz gauge condition [8]  
 

∇˙A 0=∂∂+ tφ .       (6) 
 
We will regard Eq.(5) as the asymptotic wave equation of a free particle in the vacuum.  
 
2. Solutions of the proposed wave equation 

The simplest solution of Eq.(5) is a plane wave 
 

 )(~ tie ωψ −⋅ xk
k  ,       (7)  

where  and k ω  are the wave vector and frequency, respectively. This solution represents the 
well-known wave function of a photon. This plane wave solution, however, does not properly 
describe the properties of a particle with nonzero rest mass, which behaves like a mass point in the 
classical limit. Since such a particle must have a limited “size”, the probability of detecting the 
particle (i.e. 2ψ ) in the transverse plane should not be uniform. That is, the probability of finding 
the particle is expected to be highest at its trajectory. This expectation suggests that the wave 
function of a free particle should depend not only on the coordinate parallel to its trajectory (i.e., 

), but also on the coordinates in the transverse plane ( ). (Note: Strictly speaking, the 
projection of x on the transverse plane is k , which differs to the vector k by an angle 

xk ⋅ˆ ˆ
ˆˆ ˆ

xk ×
kx ×× x×

π /2.  But since both of these two vectors are projections on the plane transverse to k  and the 
angle between them are fixed, we can use one to determine the coordinates of the other). 

ˆ

 Furthermore, since the trajectory of a free particle is a straight line, only one direction (i.e. 
the direction of motion, k ) is specified. The wave function must have a cylindrical symmetry. 
Thus, one can assume that the general wave function representing a free particle has the form  

ˆ

 
  ( ) ( ) ( )xkx kx ×⋅= ˆ   ,ˆ ,

k̂ TL tt ψψψ ,     (8) 
 
where Lψ  is the longitudinal component of the wave function which describes the travelling wave 
along the particle's trajectory, and Tψ  is the transverse component of the wave function which 
determines the probability density of the particle at the transverse plane. Substituting Eq. (8) into 
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Eq. (5), one has  
 

( ) ( )[ ] ( ) ( ) 0
2

2
2 =⋅

∂
∂×

−⋅×∇ t
tc

t 2 ,ˆ
ˆ

,ˆˆ xkxkxkxk L
T

LT ψ
ψ

ψψ .     (9)  

 
After expanding the ∇ term (keeping in mind that 2

LT ψψ ∇⋅∇  vanishes) and dividing the whole 
equation by LT ψψ ⋅ , one can rearrange Eq. (9) to obtain  
 

 ( ) ( ) ( ) ( )xk 
xk

xk
xk

×∇
×

−
=⋅








∂
∂

−∇
⋅

ˆ
ˆ
1,ˆ1

,ˆ
1 2

2

2

2
2

T
T

L
L

t
tct

ψ
ψ

ψ
ψ

 .  (10) 

 
The left-hand side of this equation is a function only of k  and t , while the right-hand side of 
this equation is a function only of k . Equation (10) holds only if both sides equal a constant, 
which we denote as l . Then, Eq. (10) becomes two simultaneous equations  

x⋅ˆ

x×ˆ
2

 

( ) ( tt
tc LL ,ˆ,ˆ1 2

2

2

2
2 xkxk ⋅=⋅








∂
∂

−∇ ψψ l )      (11) 

 
( ) ( )xkxk ×−=×∇ ˆˆ 22

TT ψψ l  ,      (12) 
 
which can be solved separately for Lψ  and Tψ . The solution of Eq. (12) is  
 
 ( ) ( ) inθ

n erJ ±∝× lxkT
ˆψ  ,       (13) 

 
where  is the Bessel function of the first kind, and n is an integer; r and nJ θ  represent the 

amplitude and the azimuthal angle of the vector , respectively. The solution of Eq. (11) is 
a plane wave 

kxk ˆˆ ××

 

  ( ) ( )tietL
ωψ −⋅∝⋅ xkxk ,ˆ   ,       (14)  

 
where = k  is a vector parallel to  and  k k̂ k̂
 
 ( ) .2122 ck l+=ω         (15) 
 
By combining Eqs. (8), (13), and (14), the wave function thus becomes  
 
 ( ) ( ) ( )tωieerJat,ψ inθ

nk
−⋅±= xkx lˆ  ,      (16) 

 
(where is a normalizing constant). As expected, the wave function of a free particle behaves like 
a travelling plane wave moving along the direction of its trajectory. But because of an added phase 

a
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factor nθ , the particle wave actually propagates in a helical fashion. The wave function as a whole 
thus behaves like a vortex. Also, k̂ψ  varies in a diminishing oscillating manner in the directions 
perpendicular to the particle's trajectory. We have calculated the variation of the wave function in 
the transverse plane; the results (for n = 0, 1, 2) are shown in Fig. 1.  

=

 
 
 

                              
 
 

Fig. 1.  Variation of the transverse wave, ( ) θψ in
nT erJ l= , is plotted as a function of the 

coordinates on the transverse plane (which is represented here as the horizontal X,Y plane). 
Here, θcosrX l=  and θsinrlY . The value of the real component of Tψ is shown 
in the Z axis. (a)  = 0, (b) n  = 1, and (c)  = 2. n n
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3. Interpreting the physical meaning of the wave parameters 
The wave function of (16) contains four parameters, ω, k,  and n. What are their physical 

meanings? From the correspondence principle [9], the energy (E) and momentum (p) of a particle 
in the classical limit can be obtained from the expectation values of the E 

l

ti ∂∂→ /h and 
p→ operators, i.e.,  ∇− hi
 

   xdψ
t

iψE 3∫ ∂
∂

∗= h ,     (17A) 

and   xd
i

ψ 3ψ∇∗=∫
hp .     (17B) 

      
(Here h  is Planck’s constant divided by 2π). Substituting Eq. (16) into Eq. (17A), one can easily 
show that  

ωh=E ,      (18)  
 

which, of course, is just the Planck's relation. Similarly, by substituting Eq. (16) into Eq. (17B), 
one can obtain the de Broglie relation  
 
   .      (19)  kp h=
 
But what is the physical meaning of l  in the classical limit? From Eq. (15), we know l  is closely 
related to ω and k.  By combining Eqs. (15), (18), and (19), we can obtain  
  

( )22222 pcE lh+= .     (20)  
 
It is well known in wave mechanics that the particle velocity (v) is determined by the group 
velocity of the wave packet [10], that is, 
 

p
E

k
ωv

∂
∂

=
∂
∂

=  .     (21)  

 
Combining Eqs. (20) and (21), one can solve for E or p and obtain  
   

   ( ) 21221 cν
cE

−
=

lh         (22)  

and  

   ( )
v

cν
cp













−
= 21221

hl   .    (23) 

 
In the classical limit, the momentum (p) is equal to the mass (M) times the velocity (v). Hence, we 
can identify the quantity within the bracket on the right-hand side of Eq. (23) as mass, that is,  
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   ( ) 21221 cν
cM

−
=

hl  .     (24) 

 
At v = 0, M equals the rest mass, m. Eq. (24) then implies that  
 

 
c
lh

=m  ,      (25)  

 
which suggests that the parameter l  is associated with the rest mass of the particle. This result 
appears to make good sense, since when we substitute Eq. (25) into Eq. (20), we have  
 

   ,     (26)  42222 cmcpE +=
 
which agrees exactly with the energy-momentum relationship obtained from the classical 
treatment of the STR [2]. Furthermore, by substituting Eq. (25) into Eqs. (22), (23), and (24), we 
can obtain the other relativistic relations, i.e.  
 

2mcγE = ,      (27) 
mcp γ= ,      (28)  

and    ,      (29)  mγM =

where ( ) 21221
−

−= cνγ  . Combining Eqs. (27) and (29), we have  
 

         (30)  2McE =
 
which is the well-known relation of mass and energy.  

Finally, what is the physical meaning of the parameter n? It appears that n is likely to be 
associated with the helicity of the free particle. First, n is a quantum number conjugate to the 
angular coordinate θ . Dimensional analysis thus suggests that n is associated with some sort of 
angular momentum. The helicity operator can be regarded as equivalent to an angular momentum 
operator about an axis of the particle's trajectory (in direction ) [11]. In our solution of the wave 
equation, the eigenvalue of this operator is . Secondly, from Eq. (16), one can see that, because 
of the added phase factor n

k̂
hn

θ , the wave function representing a free particle actually propagates in 
a helical fashion. In fact, the wave function with +i θ represents a right-handed helix while the 
wave function with -i n θ represents a left-handed helix. 

n

 
III. DISCUSSION  
 
 The validity of this model, of course, will depend on future experimental tests. We believe 
that it deserves to be examined carefully because it appears to have a number of appealing 
features: 
 
1. It provides a simple explanation for the “Uncertainty principle” of Heisenberg. 

When one regards the particle as a point-like object, as in the traditional concept of 
quantum physics, it is very difficult to explain the “Uncertainty principle” of Heisenberg. We were 
usually told that this principle is an observation of nature, and we have not found any a priori 
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explanation behind it [12]. If the particle is indeed a wavepacket representing the excitation of a 
real physical field, as suggested in this model, we can explain the “Uncertainty principle” in a 
straight forward way based on the wave nature of the “particle”. As shown in Eq. (16), the 
longitudinal component of the wave function has a phase angle (k·x – ωt). Because the particle is a 
wavepacket, it must have certain widths in the spatial and temporal dimensions, ∆x and ∆t, which 
can be linked to the linewidths of the wave number and frequency by the following relations,  

 
   ∆k·∆x ~ 2π ,       (31A) 

and   ∆ω·∆t ~ 2π .       (31B) 
 
Substituting Eqs. (18) and (19) into the above relations, we have 
 

   ∆p·∆x ~ h ,       (32A) 
and   ∆E·∆t ~ h ,       (32B) 
 
Thus, one cannot simultaneously determine the values of position and momentum (or time and 
energy) of a free particle more precisely than what is described in Eqs. (32A) and (32B), which are 
basically the “Uncertainty principle” of Heisenberg. 

 
2. It suggests a possible connection between the special theory of relativity and wave 

mechanics. 
One important result of this work is our demonstration that some of the well known 

relativistic relations can be derived using an approach of wave mechanics. STR is known to be a 
classical theory, which does not consider quantum effects. And thus, STR and quantum mechanics 
(or wave mechanics) are traditionally regarded as two totally independent physical theories. In this 
work, we show that, if we regard a particle as an excitation of the vacuum field, the relativistic 
relations between energy, momentum and mass can be derived naturally from the dispersion 
relation of the wave function representing a free particle. This result thus suggests that wave 
mechanics and STR could have a deeper philosophical connection in their theoretical roots.  
 
3. It naturally leads to the Klein-Gordon equation. 

After demonstrating that l is connected with m, it becomes possible to relate our wave 
function with those derived in the traditional wave mechanics. For example, using Eq. (25), we 
can see that Eq. (11) now becomes  

 

�  0ψmc
L

2

L =





−
h

ψ ,      (11A) 

 
which is identical to the “Klein-Gordon equation” [9]. This implies that the wave function derived 
from the Klein-Gordon equation is equivalent to the longitudinal component of the travelling wave 
representing a free particle in our model. This is consistent with our starting assumption that the 
wave function of a particle does not only represent the probability of finding the particle, it 
actually represents an oscillation of the force field. Furthermore, the fact that our model can 
naturally lead to the Klein-Gordon equation may indicate that our proposal of using Eq.(5) as the 
wave equation to describe the transporting properties of a free particle was a reasonable one.  
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4. It predicts the right effects of rest mass on the particle’s properties. 
What is the consequence of connecting the rest mass with  in the wave function of a free 

particle? Let us first examine what happens to a particle with zero rest mass, such as the case of a 
photon. From Eq. (25), m = 0 implies l  = 0. Hence, 

l

( )rn lJ  is a constant, and the wave function 

k̂ψ  given in (16) now becomes a plane wave. Thus, our model predicts that the EM wave of a 
photon in the vacuum is essentially a plane wave, which agrees well with the known results of the 
electromagnetic theory. Furthermore, when l  = 0, Eq. (15) becomes 

 
   ω = ck,       (33) 

 
which implies that the group velocity of a massless particle must equal to c, i.e.,   

 

k
ωv
∂
∂

=  = c.        (34) 

 
This provides a simple explanation to the fact that a photon must always travel in the speed of 
light.  

What happens when the rest mass is not zero? As shown in Fig.1, the wave function given 
in Eq. (16) not only oscillates in the longitudinal direction, it also oscillates in the radial direction 
in the transverse plane. The “wavelength” of this radial oscillation is equal to 2π/ l . This point 
can be seen easily, since the asymptotic form of the Bessel function for a large argument is  

 

( ) 





 +

−







→ π

π 4
12cos2

21
nr

r
rJ n l

l
l     (35) 

 
Thus, l can be regarded as the "transverse wave number" of the free particle. From Eq. (25), we 
can see that the wavelength of this transverse oscillation is  
 

   
mc
hπ

==
l

2λ  ,      (36 ) 

 
which is identical to the “Compton wavelength” ( cλ ) of the particle [13]. From relation (35), the 
amplitude of the transverse component of the wave function appears to decrease as a function of 
( r)l -½, which is rather long-range. But, since the transverse component of the wave function 
oscillates rapidly with r, it may diminish at a much shorter distance. If a particle is represented by 
a wave packet, l and can vary over a narrow range. Let us denote r  as the cut-off radius 
beyond which the wave function vanishes. From Eq. (35),  is determined by the condition  

k e

er
 
   re π∆ 2~l ,       (37)  
 
where  is the line width of l . Since l∆ l∆ << ,  is related to the mass by  l er
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   re
l∆
π2~ >> 

l

π2  =  
mc
h  .       (38)  

 
Thus, a particle with a larger m will have a smaller effective radius in the corresponding wave 
function. In other words, the matter wave representing a particle with heavier mass would be more 
“particle-like”, (i.e., the probability of finding the particle is more localized). This may explain 
why an electron behaves more like a “particle” than a photon. 
 
5. It implies a consistent geometrical relationship between mass, energy and momentum. 

In the study of theoretical physics, it is not uncommon to consider some of the physical 
relationships in term of geometry. We would like to explore if the result of our model makes good 
sense based on a geometrical consideration. Using the natural unit in which c = 1, the well 
established mass-energy relation (i.e., Eq. (26)) can be written as 

 
   ,       (39) 2mpE += 22

 
which appears as a geometrical relationship that E is the vector sum of two perpendicular vectors 
with amplitudes equal to p and m. (See Fig. 2a). Since m (or E) is a scalar instead of a vector, Eq. 
(39) cannot be regarded as a real vectorial relationship. Instead, it may suggest that m is associated 
with some sort of “intrinsic momentum” that characterizes the spatial variation of the wave 
function in directions orthogonal to p.  

 
Fig. 2. (a) Geometrical relationship between the corpuscular properties E, p and m. (b) 
Geometrical relationship between the wave parameters ω, k and . (Here we use the natural unit, 

). 
l

1=c
 

Similarly, using the natural unit, Eq. (15) derived from our model can be rewritten as 
 
  (ћω)2 = (ћk)2 + (ћ )l 2,     (40) 

 
which, like Eq. (39), also suggests a geometrical relationship that ћω is a “vector sum” of two 
perpendicular vectors with amplitudes equal to ћk and ћ . (See Fig. 2b).  In this case, however, 
we do know that l is a “wave number” that characterizes the oscillation of the wave function in a 

l
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plane transverse to k. By comparing Fig.2a with Fig.2b, and recalling the Planck’s relation and the 
de Broglie relation, one can easily see that it is highly natural to associate m with l . Furthermore, 
by comparing the relationship between p and m with the relationship between k and l , it makes 
good philosophical sense for the rest mass to be connected with a “transverse wave number”. 
 Hence, the result of this model suggests a rather pleasing picture, in which the corpuscular 
properties m, p and E in classical mechanics are all connected with some sort of wave numbers in 
wave mechanics. More specifically, p is connected with the spatial wave number along the 
direction of the particle trajectory, E is connected with a wave number in the dimension of time, 
and m is connected with a spatial wave number in the transverse plane. 
 
6. It predicts that the rest mass is Lorentz invariant. 

Finally, since the rest mass is known to be a relativistic scalar, in order to associate m with 
, one must show that the l  defined in our model also behaves like a scalar under a Lorentz 

transformation. Indeed, as shown in Appendix A, we found that the value of l  is independent of 
the inertial frame. In other words, does satisfy the requirement of being a relativistic scalar. 

l

l
Since the wave equation we used to describe the asymptotic behavior of a particle wave is 

in a form similar to that of the EM radiation in a vacuum, the solution of our wave equation is 
analogous to that encountered in the studies of cylindrical waveguides in the classical 
electromagnetic theory [14]. It has been noted that, due to the form of the dispersion relation, the 
cut-off wavenumber (which is equivalent to our transverse wavenumber) in a waveguide could be 
viewed as an “effective mass” of the electromagnetic radiation. However, we must point out that 
the physical concept of this work is fundamentally different from that of the waveguide problem. 
Our wave equation (i.e., Eq. (5)) describes the asymptotic behavior of the matter wave 
representing a free particle in the vacuum, not the radiation wave within a metal compartment. We 
are concerned with the variation of the particle wave packet at sub-atomic dimension (10-7 cm or 
less), while the radiation problem deals with variation of electromagnetic fields in dimension of 
centimeters. Furthermore, in the case of radiation, the cut-off wavenumber is determined by the 
imposed external boundary conditions (i.e., dimensions of the waveguide), which is not Lorentz 
invariant. Thus, the “effective mass” in the EM radiation within a cylindrical waveguide cannot be 
regarded as a true mass. In our case, we have shown in Appendix A that the value of l  in our 
model is a relativistic scalar. 

  
Thus, this model appears to be able to explain a number of important physical concepts in 

a simple and straight forward manner. Now, what are its shortcomings? One major limitation of 
this model is that it cannot explain the discreteness of the rest mass. We think that this limitation 
arises because our proposed simplified wave equation is only valid in the asymptotic region ( r > 
ro). In this model, we are not concerned with finding the internal structure of a particle. Instead, 
our major interest is to understand the wave properties of a particle in view of the wave-particle 
duality. Due to a lack of knowledge on the distribution of the self-charge and self-current, we did 
not know the exact form of the wave equation of a free particle at short distance ( i.e., in the 
“core” region, r < 10-13 cm). If one can write down the exact form of the wave equation in the core 
region and solve it, one may be able to obtain the restricted values of l  from the boundary 
condition, that requires the wave function in the asymptotic region to match with the wave 
function in the core region at r ~ ro. Building such a theory is a very complicated task [7]; it is 
beyond the scope of this work. 

Furthermore, at the very short distance, one needs to consider not only the EM field, but 
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also the weak and strong interactions. Thus, the wave equation governing the behavior of the 
particle wave at very short distances is far more complicated than the field equation derived from 
the Maxwell equations. So far, we are not aware of any wave equation that can explicitly include 
all known forces [15]. (Note: The standard model of elementary particle today treats the particle as 
a point-like object and thus is not suitable to describe the internal structure of a particle wave). 
Hence, we have to wait for future development before we can solve the wave equation of a particle 
at the core region and determine the limitation on the value of l . 
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APPENDIX A  
  

To show that the transverse wave number, l , as defined in Eqs. (11) and (12) is a 
"relativistic scaler,” we will demonstrate that l  is frame-independent. Consider two inertial 
frames  and , where S  moves along the direction u  at a speed u  relative to . Since the 
one-particle free-field equation (i.e., Eq. (5)) is Lorentz invariant, its solutions in both frames must 
be in the same form. That is, in the  frame, we have 

1S 2S 2 ˆ 1S

1S
 

  ( ) ( ) ( )111
11

tiθni
11n eeraJt 1 ωψ −⋅±= xk

k x
1

l,ˆ ,    (A1) 

where   ,       (A2) ( ) ckω
1/22

1
2

11 l+=
 
and in the  frame, we have  2S
 

  ( ) ( ) ( )2222

2
22

tiθni
22n eeraJt 2 ωψ −⋅±= xk

k x l,ˆ ,    (A3) 

where    .       (A4) ( ckω
1/22

2
2

22 l+= )
 
(Here we assume n  because the n -fold symmetry should not change with frame). The 
phase factor of the travelling wave is a dot product of two 4-vectors (ct, x) and (ω/c, k) and thus is 
Lorentz invariant. Similarly, the norm of the 4-vector (ω/c, k) should also remain unchanged under 
a Lorentz transformation, that is, 

nn == 21

 

  ω 2
2

22
2

2
1

22
1 kcωkc // −=− .      (A5) 

 
Combining eqs.(A2), (A4) and (A5), we have 
 

  l .        (A6) 21 l=
 
Hence, ℓ is independent of the inertial frame. 
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